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Abstract.—Large-scale monitoring of bird populations is often based on count data collected across spatial scales that may 
include multiple physiographic regions and habitat types. Monitoring at large spatial scales may require multiple survey platforms 
(e.g., from boats and land when monitoring coastal species) and multiple survey methods. It becomes especially important to explicitly 
account for detection probability when analyzing count data that have been collected using multiple survey platforms or methods. We 
evaluated a new analytical framework, N-mixture models, to estimate actual abundance while accounting for multiple detection biases. 
During May 2006, we made repeated counts of Black Oystercatchers (Haematopus bachmani) from boats in the Puget Sound area of 
Washington (n = 55 sites) and from land along the coast of Oregon (n = 56 sites). We used a Bayesian analysis of N-mixture models to (1) 
assess detection probability as a function of environmental and survey covariates and (2) estimate total Black Oystercatcher abundance 
during the breeding season in the two regions. Probability of detecting individuals during boat-based surveys was 0.75 (95% credible 
interval: 0.42–0.91) and was not influenced by tidal stage. Detection probability from surveys conducted on foot was 0.68 (0.39–0.90); 
the latter was not influenced by fog, wind, or number of observers but was ~35% lower during rain. The estimated population size was 
321 birds (262–511) in Washington and 311 (276–382) in Oregon. N-mixture models provide a flexible framework for modeling count 
data and covariates in large-scale bird monitoring programs designed to understand population change. Received 9 November 2011, 
accepted 24 May 2012.

Key words: Bayesian analysis, Black Oystercatcher, detection probability, Haematopus bachmani, hierarchical model, monitoring, 
sampling frame, survey.

Monitoreo a Gran Escala de Poblaciones de Aves Playeras mediante Datos de Conteo y Modelos de Mixturas: 
Censos de Haematopus bachmani en Tierra y Mar

Resumen.—El monitoreo a gran escala de poblaciones de aves frecuentemente se basa en datos de conteo recolectados a través de 
escalas espaciales que pueden incluir múltiples regiones fisiográficas y tipos de hábitat. El monitoreo en grandes escalas espaciales puede 
requerir de múltiples plataformas de muestreo (e.g., desde botes y desde tierra en especies costeras) y múltiples métodos de censado, por lo 
que es especialmente importante tener en cuenta explícitamente la probabilidad de detección de individuos cuando se analizan los datos de 
conteo que han sido obtenidos usando múltiples plataformas o métodos de muestreo. Evaluamos un nuevo método analítico, los modelos 
de N mixturas, para estimar la abundancia real teniendo en cuenta múltiples sesgos en los métodos de detección. Durante mayo de 2006, 
hicimos conteos repetidos de Haematopus bachmani desde botes en el área de Puget Sound, Washington (n = 55 sitios), y desde tierra a 
lo largo de la costa de Oregon (n = 56 sitios). Usamos un análisis bayesiano de modelos de N mixturas para (1) determinar la probabilidad 
de detección como función de covariables del ambiente y del método de censo y (2) estimar la abundancia total de H. bachmani durante la 
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and removal methods) address different components of the entire 
detection process. Therefore, the interpretation of detection prob-
ability is not the same with all methods (Riddle et al. 2010). Our 
approach, repeated counts and N-mixture models, accounts for 
temporary emigration, availability, and perception.

The Black Oystercatcher (Haematopus bachmani; hereafter 
“oystercatcher”) has been designated a species of high concern in 
both the U.S. and Canadian Shorebird Conservation Plans (Don-
aldson et al. 2000, Brown et al. 2001) and a Focal Species of the 
U.S. Fish and Wildlife Service (U.S. Fish and Wildlife Service 
2012). The species is of conservation concern for several reasons, 
including limited nesting habitat, vulnerability to oil spills, and 
introduction of invasive species and disturbance at coastal sites 
and offshore islands used for nesting (Andres and Falxa 1995). 
Tessler et al. (2007) outlined a conservation strategy for the spe-
cies, including the initiation of a coordinated range-wide moni-
toring effort to determine population status and detect trends. 
The conservation strategy recommends breeding-ground sur-
veys in the northern range (Alaska) and southern range (Wash-
ington to California) of the species, which would require both 
land- and boat-based surveys because suitable habitat is found 
both on and off shore. Given the differences between search-
ing for birds from a boat and on foot, it is unlikely that detec-
tion probability for these two survey methods would be equal. 
Therefore, it is necessary to understand oystercatcher detect-
ability during both land- and boat-based surveys before a range-
wide monitoring program using multiple field methods can be 
initiated.

In addition to survey platform (land or boat), there are a number 
of factors that may affect the probability of detecting oystercatchers. 
One factor may be movements associated with foraging, especially 
at low tide when some oystercatchers make extra-territorial 
movements to forage in intertidal areas (Hartwick 1978), which is 
a form of temporary emigration from the surveyed area. Another 
factor is visibility of, and access to, oystercatcher habitat. Because 
of their cryptic coloration, oystercatchers are difficult to detect on 
steep, rocky cliffs or offshore islands (when surveyed from shore). 
Finally, detection probability may vary among observers, depend-
ing on their experience with oystercatcher surveys.

Our analysis of count data uses N-mixture models, as de-
scribed by Royle (2004), which derive estimates of abundance and 
detection probability from a set of spatially and temporally repli-
cated counts. This method has advantages over other methods for 
estimating detection probability (e.g., capture–recapture, double-
observer) because it does not require individual encounter history 
data or multiple observers (Kéry and Royle 2010; for a review of 
abundance and detection estimation procedures, see Williams 
et al. 2002). Because N-mixture models rely on simple counts of 
individuals, the repeated-counts method may reduce the time 
and effort required to effectively monitor population size, and 
may be more feasible than alternative approaches to large-scale 

Large-scale bird monitoring programs can provide man-
agers and conservation decision-makers with reliable informa-
tion on changes in population size in relation to environmental 
variation and conservation actions. Monitoring programs per-
mit stronger inference about population dynamics if the design 
of the program results in adequate spatial coverage for the pop-
ulation of interest, and if field methods account for imperfect 
detection during surveys (Pollock et al. 2002, Nichols and Wil-
liams 2006). The geographic extent of monitored populations of-
ten includes multiple physiographic regions and habitat types. 
For most large-scale monitoring programs, it is not possible to 
monitor entire populations and detect all individuals during 
surveys. Usually, some type of spatial sampling and account-
ing for detection probability during surveys are necessary (Pol-
lock et al. 2002). Furthermore, it may not be possible to identify 
one survey method or survey platform (e.g., from boats and from 
land) that is suitable at all survey locations given, for example, 
variation in habitat structure, density of local target population, 
logistical constraints, and other factors. It thus becomes espe-
cially important when using multiple survey methods or plat-
forms to use estimates of actual abundance, rather than simple 
counts or indices of abundance, to facilitate comparisons of 
count data collected across space and time. Successful moni-
toring thus requires that the sampled population is represen-
tative of the population of interest, and that auxiliary data are 
collected to understand the portion of the population actually 
counted during surveys (Pollock et al. 2002). 

The observation or detection process during bird surveys 
has received considerable attention recently, and several meth-
ods have been developed to correct for bias caused by imperfect 
detection (Nichols et al. 2000, Buckland 2006, Alldredge et al. 
2007). Nichols et al. (2009) identified four components of detec-
tion operating in the process that generates count data. The first 
component, related to spatial sampling and study design, is the 
probability that a portion of an individual’s home range or ter-
ritory overlaps a sampling unit (e.g., area of point count, line-
transect, etc.; Ps in the notation of Nichols et al. 2009). Second, 
at the time of the survey, the individual must be present on the 
portion of its territory or home range that is included in the sam-
pling unit (Pp); that is, the individual must not have temporarily 
emigrated from the sampled area. For example, breeding birds 
that commute from a nest to distant foraging areas may not be 
present during a survey of the nesting location. Third, the indi-
vidual must also be available for detection (Pa); for example, birds 
that do not call or sing during auditory surveys are not available 
for detection. Fourth, the observer conducting the survey must 
be able to perceive and identify the individual (Pd). The percep-
tion component (Pd) is often a function of habitat structure, dis-
tance from observer, observer skill, survey conditions, and other 
factors (Nichols et al. 2009). Survey techniques that account for 
imperfect detection (e.g., capture–recapture, distance sampling, 

temporada reproductiva en las dos regiones. La probabilidad de detectar individuos durante los censos desde botes fue 0.75 (intervalo de 
confianza del 95%: 0.42-0.91) y no se vio influenciada por el estado de la marea. La probabilidad de detección de los censos hechos desde 
tierra fue 0.68 (0.39-0.90); esta última no fue influenciada por la niebla, el viento o el número de observadores, pero fue cerca del 35% menor 
cuando llovía. El tamaño poblacional estimado fue de 321 (262-511) aves en Washington y 311 (276-382) en Oregon. Los modelos de N 
mixturas proveen un marco flexible para el modelamiento de los datos de conteos y sus covariables en los programas de monitoreo de aves 
a gran escala diseñados para entender cambios en las poblaciones.
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monitoring. We conducted a large-scale study of the abundance 
and distribution of oystercatchers on breeding areas in Washing-
ton and Oregon in 2006. The goals of our study were to (1) assess 
probability of detection during both land- and boat-based surveys 
in relation to several covariates; (2) revise existing standardized 
survey methods and develop an analytical framework for a range-
wide, long-term monitoring plan; and (3) collect baseline informa-
tion on oystercatcher abundance from defined sampling frames in 
Washington and Oregon.

Methods

Number of sites and timing of repeated surveys.—Our study was 
conducted at 55 island sites in the San Juan Archipelago and nearby 
inner marine waters of northern Puget Sound, Washington (Fig. 1), 
which were surveyed by boat, and at 56 mainland sites in Oregon, 
which were surveyed on foot (Fig. 2). In each region of the study 
area, we first identified the extent of oystercatcher breeding habitat 
on the basis of our collective experience with the study area, gained 
during prior survey efforts, and then delineated sampling units 
(“sites”) to include in a sampling frame. Sites were defined as geo-
logically discrete islands, sections of shoreline on larger islands, or 
clusters of small islands that afforded some protection from preda-
tors and human disturbance and contained potential nesting habi-
tat (exposed rocky headlands, rocky islets, or beaches with mixed 
sand, gravel, and cobble; Andres and Falxa 1995). In Washington, 
the sampling frame for the San Juan Archipelago included 81 sites 
from which we randomly selected 55 sites to be surveyed by boat. 
Length of shoreline that was surveyed at Washington sites ranged 
from 0.12 to 6.7 km (mean = 1.6 km, SD = 1.4). In Oregon, our sam-
pling frame included 56 sites (discrete stretches of rocky shoreline) 
and we surveyed all of them (i.e., in this case, our set of surveyed 
sites and sampling frame were the same). The Oregon sampling 
frame included most available mainland habitat and near-shore is-
lands but did not include a small number of distant offshore islands 
that could be surveyed only by boat. Length of shoreline at Oregon 

sites ranged from 0.2 to 8.0 km (mean ± SD = 1.7 ± 1.3). Shoreline 
length is useful for comparing variability in size of sites in Wash-
ington and Oregon but may not be a reasonable measure of avail-
able habitat because of the complex nature of the rocky coast and 
associated intertidal habitats. Therefore, we did not include shore-
line length in our models of oystercatcher abundance. A permanent 
archive of our sampling frames and site boundaries will be main-
tained by E.E.S. (Oregon) and R.L.M. (Washington).

Boat-based surveys were conducted during 17–26 May; ev-
ery boat-based site was surveyed twice. Land-based surveys were 
conducted during 13–28 May, and the number of sites surveyed 
once, twice, three, and four times was 11, 39, 5, and 1, respectively. 
Oystercatchers breeding in the study area actively defend terri-
tories at this time of year, and we expected detection probabil-
ity to be high compared with other times of the breeding season. 
We also expected this to be a time of minimal permanent ingress 
and egress from local populations, an important consideration for 
the analytical approach (see below). Once nesting territories have 
been established, breeding birds are likely to remain associated 
with their territory while an active nest is present and will often 
renest (Andres and Falxa 1995). 

Field methods.—Protocols for oystercatcher surveys at main-
land sites and coastal islands in Washington, Oregon, and California 
were available from prior survey efforts (E. Elliott-Smith and  

Fig. 1.   Locations of 81 sites in the sampling frame for the protected 
waters of northern Puget Sound, Washington. Sites that were surveyed in 
May 2006 for Black Oystercatchers are indicated by filled triangles (n = 
55); sites that were not surveyed are indicated by an “×” (n = 26).

Fig. 2.   Locations of 56 sites in coastal Oregon where Black Oystercatch-
ers were surveyed from land in May 2006.
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S. M. Haig unpubl. data). We followed these protocols during our sur-
veys, with minor modifications to facilitate standardized, repeated 
counts. Our field protocols emphasized the importance of at least 
two replicate visits to each site under conditions as similar as pos-
sible (e.g., similar survey duration, area coverage). Site boundaries 
were drawn on large-scale maps before surveys began, and observers 
were made familiar with the boundaries so that the same area would 
be surveyed on every visit to the site. Observers conducted an area 
search of all suitable nesting habitat within site boundaries and re-
corded the total number of oystercatchers detected. In Washington, 
(boat-based) surveys were conducted by the same two experienced 
professional biologists (S.M.T. and R.L.M.). Boats were piloted by a 
third participant. Observers were thus free to focus on bird detection 
and communicate all detections to minimize double counting. In Or-
egon (land-based) surveys, number of observers was not the same at 
all sites, but for a given site we attempted to have the same number of 
observers during each visit. Oregon surveys were conducted by both 
experienced professional biologists and volunteers. Through the use 
of volunteers, we were able to increase the number of sites visited and 
reduce time between the first and subsequent counts at each site. Like 
all observers, volunteers were given guidance on conducting repeated 
surveys and were asked to review a written protocol. To the extent 
possible, observers followed standardized protocols (E. Elliott-Smith 
and S. M. Haig unpubl. data) regarding suitable survey conditions 
(e.g., no rain, low wind), field equipment, observer qualifications, and 
suggestions to minimize double counting. 

Statistical models.—N-mixture models are a class of hierarchi-
cal models for estimating animal abundance and probability of de-
tection from count data (Royle 2004). The models require a set of 
temporally replicated counts at a number of sample locations or sites. 
Royle’s (2004) N-mixture models assume that the number of birds 
exposed to sampling does not change during the survey season (i.e., 
no permanent immigration or births when young cannot be distin-
guished from adults and no permanent emigration or deaths). We 
consider this assumption met when all counts are conducted in a nar-
row time window. Repeated counts at site i may then be viewed as 
independent realizations of a binomial random variable with index 
parameter Ni (local abundance) and outcome probability p (proba-
bility of detection; Royle 2004). The analytic framework is extremely 
flexible: it is possible to model both abundance and detection as a 
function of spatially and temporally varying covariates (e.g., habitat 
variables, survey effort), and even to model simultaneous effects of a 
single covariate on both abundance and detection (Kéry 2008).

Count data from the oystercatcher surveys were summarized 
in a site-by-survey matrix of counts (c), with rows (i) representing 
different sites and columns (t) representing temporally replicated 
surveys. Ideally, every site is surveyed t times, but for sites without 
full replication, we use missing values in c. Element ci,t is the num-
ber of birds counted at site i during survey t or a missing value. That 
is, let ci,t; t = 1, 2,…, T be the independent counts made at sites i = 1, 2, 
…, R so that ci,t ~ Bin(Ni, pi,t). Under this binomial sampling model, 
the joint likelihood of the data from all sites is the product binomial
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which is a function of unknown abundance parameters {Ni} = 
(N1, N2, …,NR) and time- and site-specific detection probability 
pi,t. The N-mixture model is a hierarchical (or multilevel) model 

because it combines the joint likelihood above (level 1) with a prior 
distribution for the unobservable abundance parameters (level 2), 
yielding estimates of both detection probability and average local 
abundance. The second level of the model in our analysis was a 
Poisson prior distribution for average local abundance, a distribu-
tion commonly used to model counts of animals (Kéry et al. 2005). 

Given the prior distribution Ni ~ Poisson(λ), and the joint 
likelihood of the data above, estimation of λ and parameters of the 
model describing the detection process p is based on the marginal 
likelihood of the data:
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We carried out a Bayesian analysis of N-mixture models us-
ing WinBUGS software (Spiegelhalter et al. 2003). We used non-
informative priors for all parameters and ran three Markov chain 
Monte Carlo (MCMC) simulations. We monitored chain conver-
gence on posterior distributions with the R̂ statistic (Gelman and 
Hill 2007). Each Markov chain contained 20,000 iterations, and 
we discarded the first 10,000 as “burn-in.” We evaluated model fit 
using posterior predictive checks and summarized posterior dis-
tributions of abundance and detection parameters using medians 
and 95% Bayesian credible intervals (BCI; Gelman and Hill 2007).

Covariates of abundance and detection.—Two of our primary 
goals were to (1) evaluate detection probability during boat- and 
land-based surveys and (2) identify both field and analytical meth-
ods useful for long-term monitoring. With N-mixture models, 
covariates are evaluated using log-linear (for abundance) and 
logistic-linear (for detection) models. Our model of site-specific 
abundance for both Oregon and Washington sites was an overdis-
persed Poisson (Kéry and Schaub 2012): 

Ni ~ Poisson(λ) 
log(λi) = α + δi 

δ ~ Normal(0, 2σλ)

where α is mean bird density and δi is a random error term for each 
site; no additional covariates for abundance were used. Similar to the 
negative binomial, this Poisson log-normal allows for more variability 
in abundance than a Poisson. One of the useful features of a Bayesian 
analysis of this model is the ease with which we can estimate abun-
dance for all sites in our sampling frame, not just the surveyed sites. 
We simply added a row to our data set for each unsurveyed site (with 
missing values for count data), and population size at unsurveyed 
sites was estimated as part of the updating of the MCMC algorithm 
with full propagation of the combined estimation uncertainty. 

We used overdispersed logistic regression models to evaluate 
effects of environmental and survey covariates thought to influ-
ence the probability of detecting oystercatchers:

logit(pi,t) = β0 + β1 × Xi,t + εi,t 
ε ~ Normal(0, p

2σ )

where β0 is the logit-scale estimate of detection probability when co-
variate X = 0, Xi,t is the covariate value at site i at survey time t, β1 
is the logit-scale estimate of change in detection probability for each 
unit change in X, and εi,t is a random error term for extra-binomial 
variation associated with each site visit (Kéry and Schaub 2012). For 
boat-based surveys, tidal stage was expected to influence detection 
probability via reduced ability to approach and see elevated nesting 
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habitat from the boat at low tide. Therefore, observers recorded the 
tidal stage using a six-point scale based on time since last high tide: 
high-falling (0–2 h after high tide), mid-falling (2–4 h), low-falling 
(4–6 h), low-rising (6–8 h), mid-rising (8–10 h), and high-rising (10–
12 h). Tidal stages were converted to circular data using the midpoint 
(θ) of the tidal stage arc on a 360° scale. For example, “high-falling” 
occurs from 0 to 2 h after high tide; the midpoint of this period is  
1 h after high tide, which corresponds to θ = 30°. For analysis, we used 
cosine θ as the tidal stage covariate for detection during boat-based 
surveys; cosine θ reaches a maximum at high tide and a minimum at 
low tide. Note that the cosine-transformation combines equivalent 
tidal stages into three categories for analysis (low-falling is equivalent 
to low-rising, mid-rising is equivalent to mid-falling, and high-rising 
is equivalent to high-falling). For land-based surveys, detection prob-
ability was modeled as a function of precipitation, wind speed, and 
number of observers. During each visit, observers recorded amount 
of precipitation on an ordinal scale: (0) none, (1) fog or drizzle, (2) light 
rain, or (3) rain. Precipitation categories 2 and 3 were combined in 
one category (“rain”), and precipitation was treated as a categorical 
variable with three levels for analysis. Wind speed was recorded using 
the Beaufort scale (0–7) and treated as a continuous variable; wind 
data were standardized to have mean 0 and variance 1 by subtracting 
the mean and dividing by the sample standard deviation before anal-
ysis. Boat-based surveys were generally conducted only during favor-
able conditions, so environmental covariates other than tidal stage 
were not recorded and were not included in the analysis. Number of 
observers was evaluated only for land-based surveys because number 
of observers was held constant for boat-based surveys (two observers 
on every survey).

Results

In Washington, observers detected 133 and 145 oystercatchers dur-
ing the first and second replicate surveys, respectively, at 55 randomly 
selected sites. Using the N-mixture model to account for detection 
probability, we estimated the population size at these 55 surveyed 
sites to be 219 (95% BCI: 194–279). The sum of maximum counts at 
each site, a conventional population estimate uncorrected for detec-
tion probability, was 179 birds, which was only 82% of our estimated 
population total for surveyed sites. For all 81 sites in the Washing-
ton sampling frame, our estimated total population size was 321 birds 
(95% BCI: 262–511). In Oregon, observers detected 223 birds during 
the first survey (n = 56 sites). Using the N-mixture model to account 
for detection probability, we estimated the total population size at all 
56 sites in Oregon to be 311 birds (95% BCI: 276–382). The sum of 
maximum counts at each site was 252, which was only 80% of our 
estimated population total. There was more unexplained variation in 
abundance (random site effects) at Washington sites (σλ = 0.82; 95% 
BCI: 0.56–1.17) than at Oregon sites (σλ = 0.49; 95% BCI: 0.29–0.73).

For boat-based surveys, which were always conducted by two 
observers, probability of detection was 0.75 (95% BCI: 0.42–0.91). 
The standard deviation of normally distributed random survey 
effects associated with boat-based surveys (σp) was 2.07 (Table 1). 
We conducted boat surveys during all tidal stages: 49 (43%) during 
low tides, 29 (25%) during mid-tides, and 36 (32%) during high tides. 
Most sites (89%) were surveyed at different tidal stages during the 
first and second surveys, but we found that tidal stage did not influ-
ence detection probability (Table 1). For land-based surveys, prob-
ability of detecting an oystercatcher was 0.68 (95% BCI: 0.39–0.90). 

This estimate is average detection probability under reference con-
ditions: one observer and favorable weather conditions (no fog or 
rain, and average wind speed). For multiple observers under favor-
able conditions, detection probability increased to 0.71 (95% BCI: 
0.32–0.94; Fig. 3). Although not influenced by fog or wind, detec-
tion probability during land-based surveys was ~35% lower during 
rain than under conditions without rain (Table 1 and Fig. 3). The ef-
fects of rain and number of observers were marginal compared with 
random unexplained variation in detection probability, however; 
standard deviation of random effects associated with land-based 
surveys (σp) was 2.17 (Table 1). Thus, detection probability was more 
variable during land-based surveys than during boat-based surveys. 
Confidence intervals for effects of fog, rain, wind, and number of 
observers included zero (Table 1).

Fig. 3.   Estimated probability of detecting Black Oystercatchers during 
land-based surveys in Oregon as a function of (A) precipitation condi-
tions and (B) number of observers conducting the survey. Each boxplot 
shows the posterior distribution for estimated detection probability us-
ing an N-mixture model for repeated counts. Heavy line is the median of 
posterior distribution, and box width indicates 25% and 75% quantiles.

Table 1.   Detection probability and covariate effects for boat- 
and land-based surveys. Tide, Rain, Fog, Wind, and Observers, 
respectively, are logit-scale parameter estimates for effects of 
tidal stage, rain, fog, wind speed, and number of observers (sin-
gle vs. multiple). β0 is logit-scale mean detection probability 
under reference conditions for each model (mid-tide for boat-
based surveys; one observer, no rain, no fog, and average wind 
for land-based surveys), p

2σ  is standard deviation of random sur-
vey effects, and BCI is Bayesian credible interval.

Median 95% BCI

Boat-based surveys
β0(boat) 1.08 –0.33 to 2.36
Tide 0.33 –0.48 to 1.33

p
2σ  (boat) 2.07 0.69 to 3.52

Land-based surveys
β0(land) 0.74 –0.44 to 2.18
Rain -1.43 –3.27 to 0.17
Fog -0.88 –2.92 to 0.85
Wind 0.24 –0.21 to 0.82
Observers 0.16 –1.42 to 1.62

p
2σ  (land) 2.17 1.16 to 3.46
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Discussion

Large-scale wildlife monitoring plans should consider methods 
to account for imperfect detection of animals during field sur-
veys (Pollock et al. 2002, Kéry and Schmid 2004). In most field 
situations it is not reasonable to assume that there is no space- or 
time-trend in detection of birds, especially when monitoring at 
large temporal and spatial scales or when using multiple survey 
platforms or observers. Our study demonstrates a reasonable ap-
proach to correcting bird count data for multiple sources of bias. 
Repeated counts and N-mixture models are a flexible framework 
for analysis of count data from spatially and temporally replicated 
surveys (Royle 2004, Kéry 2008). Repeated counts worked espe-
cially well in our study because the Royle (2004) model accounts 
for bias not only from perception by observers, but also from 
temporary emigration (e.g., foraging away from the nesting terri-
tory during low tide) and availability for detection (Nichols et al. 
2009). N-mixture models also were effective in our study because 
the structure of oystercatcher habitat made it possible to delineate 
discrete sites (sample units) that were large in relation to the size 
of individual nesting territories and that circumscribed a local 
population. A similar approach to delineating sites and local pop-
ulations would probably work well for many wetland-dependent 
shorebirds because it is often possible to clearly describe wetland 
boundaries.

We collected baseline information on oystercatcher abun-
dance from defined sampling frames in the San Juan Archipel-
ago and Oregon that complement prior surveys of these areas and 
serve as a firm basis for future monitoring. Robust comparisons 
with prior survey data are confounded by differences in meth-
odology, but our population estimates are generally higher than 
previous estimates. In a 2003 single-count survey of the San Juan 
Archipelago and adjacent areas, 193 birds were detected (D. R. Ny-
sewander unpubl. data), which is substantially lower than our es-
timate for the region. A 2005 statewide survey in Oregon, which 
unlike our 2006 survey included boat-based surveys for distant 
islands, detected 320 birds, including 247 at land-based sites (Tes-
sler et al. 2007, E. Elliott-Smith and E. G. Kelly unpubl. data). We 
detected a similar number at land-based sites in 2006, but after 
accounting for detection probability our population estimate for 
land-based sites is somewhat greater. For future statewide surveys 
in Oregon, our sampling frame would need to be expanded to in-
clude distant offshore islands because it appears that a substantial 
number of oystercatchers breed on these islands. Given the differ-
ent methods and sampling frames, it is not possible to determine 
whether discrepancies among available abundance estimates are 
real population change. For future efforts, the present study not 
only establishes a repeatable sampling frame and standardized 
protocols to account for detection probability, but also provides 
baseline information. Additional work is needed to develop pro-
cedures to quantify oystercatcher habitat so that more complex 
models of abundance can be assessed, which will increase our un-
derstanding of habitat relationships and increase the precision of 
population estimates. 

Understanding detection probability.—We are not aware of 
any previous effort to formally estimate detection probability of 
oystercatchers during land- or boat-based surveys. Our results in-
dicate that ~70% of oystercatchers associated with a particular site 

are detected during one-time, standardized surveys. Several fac-
tors may influence the probability of detecting oystercatchers dur-
ing the breeding season, some independent of survey platform and 
others applicable only to land-based surveys. Detection probabil-
ity can be low, regardless of survey platform, wherever observers 
have difficulty accessing or completely viewing steep, rocky cliffs. 
In areas of complex topography, there are many places where incu-
bating or resting birds may not be entirely visible to observers, or 
where detection probability is low as a result of the species’ cryptic 
coloration. This may be particularly true for offshore rocks being 
surveyed from land because an oystercatcher resting or foraging on 
the ocean side of such rocks at the time of the survey will not be 
available for detection unless it vocalizes. Boat-based surveys may 
be able to minimize this problem because the observer can circle 
the island and view a greater proportion of available habitat. Land-
based surveys had more unexplained variation in detection proba-
bility than boat-based surveys, some of which may have arisen from 
differences in accessibility. Some unexplained variation may also 
have been due to unmodeled observer effects (e.g., skill and expe-
rience) and inconsistent survey effort across repeated visits at par-
ticular sites; there was some indication that coverage of available 
habitat by volunteer observers was <100% during some surveys.

It is important to evaluate assumptions and potential bias of 
any survey method and assess implications of bias for long-term 
monitoring plans. We assumed that no births, deaths, permanent 
immigration, or permanent emigration occurred during the survey 
window (15 days in Oregon and 9 days in Washington). We do not 
believe that these are strong assumptions given the short duration 
of the study. For long-lived birds, probability of death during 9–15 
days early in the breeding season is negligible. We also assumed 
that birds are associated with only one of our sites. During our sur-
veys, we simply recorded number of birds because it is difficult to 
distinguish between breeding adults and nonbreeding subadults. 
Subadult oystercatchers generally do not defend territories, and 
they may wander (move among multiple sites) more than adults. If 
subadults regularly use more than one of the sites in our sampling 
frame, individual birds could be double counted and our population 
size estimates would be biased high. Furthermore, movements of 
subadults could be a source of heterogeneity in detection probabil-
ity. Studies using individually marked birds and telemetry (cf. John-
son et al. 2010), implemented at an intensive, local scale, would help 
us understand the implications of local movements for detection 
probability during surveys, and potential for bias in our population 
estimates. To improve monitoring designs, we must understand 
daily movements, the number of sites that birds use on a regular 
basis, and the probability that an individual is present and available 
for detection during a survey. In addition, we must understand how 
these factors differ between breeding adults and subadults and what 
proportion of the population is in each age class. 

The possibility of time trends in detection probability under-
mining long-term monitoring programs for shorebirds and other 
bird groups may not be fully appreciated. When initiating long-
term bird monitoring programs, investigators identify sampling 
designs, draft protocols, and begin data collection. Over time, pro-
tocols are often refined, observers become more skilled in conduct-
ing standardized surveys, and unforeseen logistical constraints 
may be removed. In our experience, institutions and observer 
corps, especially volunteers, became more adept at conducting 
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oystercatcher surveys over time. This suggests that detection 
probabilities may increase over time, which could be incorpo-
rated into methods like N-mixture models that explicitly account 
for the observation process to adjust raw counts (Nichols et al.  
2009). Climate change may also produce time trends in environ-
mental factors, such as precipitation, that can affect detection 
probability. Analyses based on raw counts and index methods, 
rather than methods such as N-mixture models that can explicitly 
account for possible time trends in detection, may result in spuri-
ous conclusions about population change if a trend in detection 
probability exists (Kéry and Royle 2010).

Management, monitoring, and conservation planning.—Our 
results can be used to plan future monitoring efforts for oyster-
catchers and other shorebird populations. Federal and state land 
management agencies have recommended a comprehensive range-
wide survey of oystercatchers (Tessler et al. 2007), and our results 
can be used to improve sampling designs and protocols. The final 
sampling design for a range-wide survey will depend on the specific 
objectives of the monitoring plan, but we can suggest design ele-
ments to consider on the basis of our results. It will be important to 
(1) ensure adequate spatial coverage of the target population, which 
may include the entire breeding range of the species; (2) divide the 
target population into discrete sampling units, which constitute the 
sampling frame (Cochran 1977:6); and (3) select sampling units in a 
probabilistic manner such that the sampled population represents 
the target population. Prior surveys for oystercatchers in our study 
area have often used disparate sampling frames over time, variously 
including or excluding offshore islands, for example. We found it 
difficult to make comparisons with available historical data because 
sampling frames were generally not well defined.

Our results provide strong evidence that detection proba-
bility is lower when it is raining. If logistically feasible, observers 
could postpone surveys scheduled for rainy days or make an ad-
ditional survey of the site on a clear day. At the very least, we hope 
that data collection and analyses would employ analytical meth-
ods, such as N-mixture models, that explicitly account for detec-
tion probability as a function of important covariates. We found 
no evidence that detection probability is affected by tidal stage 
during boat surveys; thus, managers could increase efficiency and 
reduce costs by conducting surveys throughout the tidal cycle. 
The influence of tidal stage on land-based surveys, which we did 
not investigate, is unknown and may require further study.

Other considerations when designing a range-wide survey 
include duration of sampling each year, especially when using re-
peated counts and N-mixture models. In general, the timing of the 
surveys in our study area (late May) seemed to coincide with a pe-
riod of minimal ingress and egress from local populations and one 
of relatively high detection probability because breeding birds were 
actively defending territories. Timing of surveys in other parts of 
the range could be designed to match local breeding phenology (i.e., 
match timing of territory establishment and defense and of nest ini-
tiation). In our study, we were able to survey most sites two or three 
times. It is not necessary to visit every site more than once, but most 
sites should be visited multiple times. If resources allow, increasing 
the number of visits will increase the precision of detection prob-
ability estimates. Incorporating additional explanatory covariates 
for detection probability and abundance in the N-mixture models 
may reduce heterogeneity among sites and improve the precision 

of estimates for both parameters. Finally, managers and other 
decision-makers may wish to estimate population trends over time. 
Extending our single-season analysis to multiple seasons (years) as 
part of a long-term, large-scale monitoring effort for individual sites 
or all sites in a sampling frame is a straightforward procedure with 
N-mixture models (Kéry and Royle 2010). 

In coastal areas, shorebird populations face a plethora of 
threats: changes in carrying capacity of intertidal habitat as a re-
sult of sea-level rise, changes in prey resources as a result of warm-
ing sea-surface temperatures, and increased disturbance resulting 
from coastal development and urbanization (Galbraith et al. 2002, 
Piersma and Lindström 2004). In a time of limited resources for 
conservation and management, but no shortage of uncertainty 
about underlying causes of population declines, monitoring based 
on consistent sampling frames and proper accounting of detec-
tion probability is an effective way to increase our understanding 
of shorebird population dynamics.
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